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Abstract

Graph machine learning has been extensively stud-
ied in both academia and industry. However, in
the literature, most existing graph machine learn-
ing models are designed to conduct training with
data samples in a random order, which may suf-
fer from suboptimal performance due to ignoring
the importance of different graph data samples and
their training orders for the model optimization sta-
tus. To tackle this critical problem, curriculum
graph machine learning (Graph CL), which inte-
grates the strength of graph machine learning and
curriculum learning, arises and attracts an increas-
ing amount of attention from the research commu-
nity. Therefore, in this paper, we comprehensively
overview approaches on Graph CL and present a
detailed survey of recent advances in this direction.
Specifically, we first discuss the key challenges of
Graph CL and provide its formal problem defini-
tion. Then, we categorize and summarize existing
methods into three classes based on three kinds of
graph machine learning tasks, i.e., node-level, link-
level, and graph-level tasks. Finally, we share our
thoughts on future research directions. To the best
of our knowledge, this paper is the first survey for
curriculum graph machine learning.

1 Introduction
Graph structured data is ubiquitous in the real world, which
has been widely used to model the complex relationships and
dependencies among various entities. In the past decade,
graph machine learning approaches, especially graph neu-
ral networks (GNNs) [Kipf and Welling, 2017; Veličković et
al., 2018; Hamilton et al., 2017], have drawn ever-increasing
attention in both academia and industry, which make great
progress in a variety of applications across wide-ranging do-
mains, ranging from physics [Sanchez-Gonzalez et al., 2020]
to chemistry [Gilmer et al., 2017], and from neuroscience [de
Vico Fallani et al., 2014] to social science [Zhang and Tong,
2016]. Other areas, such as recommender systems [Wu et
al., 2022], knowledge graphs [Wang et al., 2017], molecular
prediction [Hu et al., 2020a], medical detection [Horry et al.,

2020] etc., also provide an increasing demand for the appli-
cations of graph machine learning.

Despite the popularity of graph machine learning ap-
proaches, the existing literature generally trains graph mod-
els by feeding the data samples in a random order during
the training process. For example, when training GNNs, the
widely adopted mini-batch stochastic gradient descent opti-
mization strategy as well as its variants select the data sam-
ples in each mini-batch randomly. However, such training
strategies largely ignore the importance of different graph
data samples and how their orders can affect the optimization
status, which may result in suboptimal performance of the
graph learning models [Wei et al., 2022; Wang et al., 2021b].
Typically, humans tend to learn much better when the data ex-
amples are organized in a meaningful order rather than ran-
domly presented, e.g., learning from basic easy concepts to
advanced hard concepts resembling the “curriculum” taught
in schools [Elman, 1993; Rohde and Plaut, 1999]. To this end,
curriculum learning (CL) [Bengio et al., 2009; Wang et al.,
2021a; Soviany et al., 2022] is proposed to mimic human’s
learning process, and has been proved to be effective in boost-
ing the model performances as well as improving the gener-
alization capacity and convergence of learning models in var-
ious scenarios including computer vision [Guo et al., 2018;
Jiang et al., 2014], natural language processing [Platanios et
al., 2019; Tay et al., 2019] etc.

Curriculum graph machine learning (Graph CL), which
combines the strength of graph machine learning and curricu-
lum learning, has become a promising research direction and
attracted an increasing number of interests from the commu-
nity, spanning over a variety of graph learning methodolo-
gies and applications recently. Facing opportunities as well
as challenges, we believe it is the right time to review and
promote the studies of Graph CL approaches. In this survey,
we provide a comprehensive and systematic review of Graph
CL. Specifically, we first analyze the key challenges of Graph
CL and introduce the basic formulations. Then, we summa-
rize the existing methodologies into three categories based on
the granularity of graph tasks, i.e., node-level, link-level, and
graph-level tasks, and elaborate representative approaches in
each category. Last but not least, we discuss potential future
research topics, which could shed light on the development of
this promising area. We deeply hope this survey may provide
insights to promote the Graph CL research in the community.
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2 Challenges and Problem Formulation
Curriculum graph machine learning (Graph CL), as an emerg-
ing research topic in the machine learning community, which
non-trivially combines the strength of graph machine learning
and curriculum learning, faces the following challenges.
• Uniqueness of curriculum graph learning problem. Un-

like image or text, graph data lies in a non-Euclidean
space. Besides, there exist complex relationships and de-
pendencies between entities in graphs. Therefore, the non-
Euclidean nature and complexity of graph-structured data
bring unique challenges in tackling Graph CL problem.

• Complexity of curriculum graph learning method. Al-
though general CL algorithms [Wang et al., 2021a; Soviany
et al., 2022] have been extensively studied, it is non-trivial
to combine the advantages of graph machine learning and
curriculum learning into one unified framework, especially
when customizing the design of the key CL components
such as the difficulty measurer and the training scheduler
that are compatible with graph models.

• Diversity of curriculum graph learning task. Curriculum
graph learning tasks range from node-level and link-level
to graph-level problems with different settings, objectives,
constraints, and domain knowledge. Therefore, it is impor-
tant yet difficult to develop graph CL approaches tailored
for different graph tasks or applications.
The methodologies reviewed in this paper target on dealing

with at least one of these three key challenges. Before intro-
ducing the problem formulation of curriculum graph machine
learning (Graph CL), we briefly describe the background of
graph machine learning and curriculum learning.

2.1 Graph Machine Learning
Existing graph machine learning models can be generally
divided into the following two groups: network embed-
ding (NE) [Cui et al., 2018] and graph neural networks
(GNNs) [Zhang et al., 2020]. Specifically, GNNs as the
current state-of-the-art in graph machine learning, have been
widely adopted to serve as the backbone of a graph curricu-
lum learning method.

Let G = (V, E) be a graph with the node set V and the edge
(link) set E ⊆ V × V . GNNs first learn node representations
by the following message-passing [Gilmer et al., 2017; Zhang
et al., 2022a] function:

h(l+1)
v = COM

(
h(l)
v ,

[
AGG

({
h(l)
u | u ∈ Nv

})])
, (1)

where h
(l)
v is the node representation of node v at the lth

layer, which is usually initialized as node feature at the first
layer. Nv denotes the neighbors of node v. AGG(·) and
COM(·) denote the aggregation and combination function
of GNNs [Wu et al., 2020a]. After deriving the node repre-
sentations, the link representations can be obtained based on
the representations of the two connected nodes. Furthermore,
graph-level representations can be computed by the readout
(or pooling) [Xu et al., 2019] operation on all nodes in this
graph: h

(l)
G = READOUT

{
h
(l)
v | v ∈ V

}
. Finally, the rep-

resentations of nodes, links, or graphs can be applied to dif-
ferent levels of graph tasks.

2.2 Curriculum Learning
Curriculum learning (CL), which mimics the human’s learn-
ing process of learning data samples in a meaningful order,
aims to enhance the machine learning models by using de-
signed training curriculum, typically following an easy-to-
hard pattern. As a general and flexible plug-in, the CL strat-
egy has demonstrated its power in improving the model per-
formance, generalization, robustness, and even convergence
in a wide range of scenarios [Liu et al., 2023a]. In general,
the framework of curriculum learning consists of a difficulty
measurer and a training scheduler [Wang et al., 2021a]. The
difficulty measurer is adopted to calculate the difficulty score
for each data sample and the training scheduler aims to ar-
range data samples in a meaningful order as the curriculum
for training, based on the judgment of the difficulty measurer.

The existing CL methods fall into two groups: (1) prede-
fined CL that manually designs heuristic-based policies to de-
cide the training order, and (2) automatic CL that relies on
computable metrics (e.g., the training loss) to automatically
design the curriculum for model training. Predefined CL can
utilize expert knowledge but ignores the model’s feedback,
and automatic CL is domain-agnostic and more general as
well as able to consider the model’s feedback. That is to say,
automatic CL is more data-driven or model-driven instead of
human-driven, and more dynamically adaptive to the current
training status, than predefined CL. In addition, the training
schedulers can be divided into discrete and continuous sched-
ulers. The discrete schedulers adjust training after every fixed
number (> 1) of epochs or convergence on the current data
samples, while the continuous schedulers adjust the training
at every epoch.

2.3 Curriculum Graph Machine Learning
Let C = ⟨Q1, . . . , Qt, . . . , QT ⟩ denote a curriculum for train-
ing the graph model, which consists of a sequence of train-
ing data subsets over T training steps. Each data subset Qt

contains current training samples to be fed into the learning
model at time step t. The order of all data subsets is deter-
mined by the difficulty measurer and the training scheduler.
Therefore, the problem of curriculum graph machine learning
(Graph CL) can be formulated in the following:

Problem 1. (Curriculum Graph Machine Learning). Given
the training set of data instances (i.e., nodes, links, or graphs)
D = {(Xi, Yi)}|D|

i=1, where Xi is the input instance and Yi

denotes the label, the goal is to optimize an optimal graph
learning model guided by the curriculum C, so as to achieve
the best performance on testing graph data.

3 Categorization
To tackle the non-trivial challenges introduced in Section 2,
considerable efforts have been made in the literature, which
integrate the strengths of graph machine learning and curricu-
lum learning, and further propose tailored methods. Next, we
will comprehensively review the existing methodologies by
categorizing them into three groups based on the granular-
ity of graph tasks, i.e., node-level, link-level, and graph-level
tasks, followed by elaborations on representative approaches.
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Method Graph CL Type Difficulty Measurer Training Scheduler Task Need Label
Node-level Graph CL

CLNode [2022] Predefined Label Distribution Continuous Node Classification ✓
GNN-CL [2022c] Predefined Sample Similarity Continuous Node Classification ✓
SMMCL [2019] Predefined Label Distribution Discrete Node Classification ✓
DiGCL [2021] Predefined Laplacian Perturbation Continuous Node Classification ✗
HSAN [2023b] Predefined Sample Similarity Discrete Node Classification ✗
MTGNN [2020b] Predefined Step Length Discrete Time Series Forecasting ✓
MentorGNN [2022a] Automatic Attention Weight Discrete Node Classification ✗
RCL [2023] Automatic Self-supervised Loss Continuous Node Classification ✓
DRL [2018] Automatic Cumulative Reward Discrete Node Classification ✓
GAUSS [2022] Automatic Sample Loss Discrete Node Classification ✓
CGCT [2021] Automatic Sample Similarity Discrete Image Classification ✓

Link-level Graph CL

GCN-WSRS [2018] Predefined Sample Similarity Continuous Link Prediction ✓
TUNEUP [2022] Predefined Node Degree Discrete Link Prediction ✓
CHEST [2023] Predefined Pretraining Task Discrete Link Prediction ✗
GTNN [2022] Automatic Sample Loss Discrete Relation Extraction ✓

Graph-level Graph CL

CurGraph [2021b] Predefined Label Distribution Discrete Graph Classification ✓
CuCo [2021] Predefined Sample Similarity Continuous Graph Classification ✗
HACL [2022] Predefined Sample Size Discrete Graph Classification ✓
Dual-GCN [2021] Predefined BLEU Metric Discrete Image Captioning ✓
CurrMG [2022] Automatic Domain Knowledge Continuous Graph classification ✓
HAC-TSP [2022b] Automatic Solution Cost Continuous Travelling Salesman Problem ✗

Table 1: A summary of curriculum graph machine learning methods. “Graph CL Type” denotes the curriculum learning type that each method
belongs to, including predefined and automatic graph CL. “Difficulty Measurer” indicates the principle to design difficulty metric. “Training
Scheduler” denotes the scheduler type that each method adopts. “Task” means the learning task of each method, including general tasks and
specific applications. “Need Label” represents whether the method relies on labels during the training process.

Furthermore, for each category, we divide the methodologies
into predefined graph CL and automatic graph CL, based on
the type of curriculum learning strategy, i.e., whether adopt-
ing manually designed heuristic-based policies or automati-
cally computable metrics to derive the curriculum for train-
ing. The categorization and characteristics of surveyed graph
CL methods are summarized in Table 1.

4 Node-level Graph CL
Node is the fundamental unit for graph formation. Typically,
the key to tackle node-level tasks is to learn node represen-
tations by training graph models (e.g., GNNs). Therefore,
several studies on node-level graph CL are proposed to train
graph models by starting with easy nodes and gradually in-
clude harder nodes during the training process, including both
predefined and automatic node-level graph CL approaches.

4.1 Predefined Node-level Graph CL
Some methods define heuristic metrics to measure the dif-
ficulty of nodes in advance of the training process, e.g., by
considering nodes’ properties in terms of the topology, the
feature, or the label.

CLNode (Curriculum Learning for Node Classifica-
tion) [Wei et al., 2022] is a curriculum learning framework
for node-level representation learning of GNNs. It boosts the
performance of backbone GNNs via incrementally introduc-
ing nodes into the training process, starting with easy nodes

and progressing to harder nodes. The multi-perspective diffi-
culty measurer is proposed to measure the difficulty of train-
ing nodes based on the label information. Specifically, the lo-
cal perspective’s difficulty measurer calculates local label dis-
tribution to recognize inter-class difficult nodes whose neigh-
bors have diverse labels. And the global perspective’s diffi-
culty measurer recognizes mislabeled difficult nodes in terms
of node feature. The continuous training scheduler is intro-
duced to select appropriate training nodes in each epoch to
mitigate the detrimental effect of difficult nodes. CLNode
can be compatible with most existing GNNs and boost their
performances without increasing the time complexity just by
feeding training nodes in order from easy to hard.

GNN-CL (Graph Neural Network with Curriculum Learn-
ing) [Li et al., 2022c] introduces curriculum learning into the
imbalanced node classification task by controlling the train-
ing procedure from easy to hard, which consists of two mod-
ules. The first one is an adaptive graph oversampling module,
which interpolates the most significant samples related to the
original structure, so as to dynamically adjust the data distri-
bution in the graph from imbalance to balance. The second
one is a neighbor-based metric learning module. The dis-
tances between nodes and the connected neighbors are reg-
ularized based on the pseudo labels, which can dynamically
adjust the position of the embeddings of minority class nodes
in feature space. GNN-CL balances the label classification
loss and neighbor-based triplet loss [Wang et al., 2019] in the
whole training process. The curriculum strategy consisting
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of two opposite learning curves is adopted. At the beginning
of the training process, it pays more attention to optimizing
feature propagation as well as reducing biased noises in the
soft feature space. And it gradually focuses more on the av-
erage accuracy in each class, leading to strong accuracy on
imbalanced node classification datasets.

SMMCL (Soft Multi-Modal Curriculum Learning) [Gong
et al., 2019] proposes a graph CL method for the label propa-
gation on graphs [Iscen et al., 2019]. The goal is to learn the
labels for predictions of unlabeled samples on graphs. Specif-
ically, the authors assume that different unlabeled samples
have different difficulty levels for propagation, so it should
follow an easy-to-hard sequence with updated curriculum for
label propagation. They also claim that the real-world graph
data is often in multiple modalities [Gao et al., 2017], where
each modality should be equipped with a “teacher” that not
only evaluates the difficulties of samples from its own view-
point, but cooperates with other teachers to generate the over-
all simplest curriculum samples for propagation. They take
the curriculum of the teachers as a whole, so that the com-
mon preference (i.e., commonality) of teachers on selecting
samples can be captured. Finally, an accurate curriculum se-
quence is established and the propagation quality can thus be
improved, leading to more accurate label prediction results.

In addition to the supervised methods above that heavily
rely on labels for training, there exist some self-supervised
contrastive node-level graph CL methods.

DiGCL (Directed Graph Contrastive Learning) [Tong et
al., 2021] considers multi-task curriculum learning to pro-
gressively learn from multiple easy-to-hard contrastive views
in directed graph contrastive learning. Specifically, to maxi-
mize the mutual information between the representations of
different contrastive views [You et al., 2020] and produce
informative node representations, it introduces a generalized
dynamic-view contrastive objective. The multi-task curricu-
lum learning strategy is proposed to divide multiple con-
trastive views into sub-tasks with various difficulties and pro-
gressively learn from easy-to-hard sub-tasks. The different
contrastive view pairs generated from Laplacian perturbation
on the input graph are scored by a difficulty measurer that
is a predefined function in terms of the Laplacian perturba-
tion [Tong et al., 2020]. And three common function families
are considered as the training scheduler, including logarith-
mic, exponential, and linear functions. Note that this method
is first to introduce curriculum learning in directed graph con-
trastive learning for node-level representation learning.

HSAN (Hard Sample Aware Network) [Liu et al., 2023b]
also considers curriculum learning scheme in contrastive
clustering on graphs. Specifically, it first introduces a simi-
larity measure criterion between training pairs in graph con-
trastive learning, which measures the difficulty considering
both attribute and structure information and improves the rep-
resentativeness of the selected hard negative samples. Be-
sides, to overcome the drawback of classical graph con-
trastive learning that the hard node pairs are treated equally,
it proposes a dynamic weight modulating function to adjust
the weights of sample pairs during training, which can up-
weight the hard node pairs and down-weight the negative
ones. The focusing factor controls the down-weighting rate

of easy sample pairs, as the training scheduler of this method.
Thus, the discriminative capability of learned representations
is enhanced, leading to better performances.

MTGNN (Multivariate Time Series GNN) [Wu et al.,
2020b] is a graph CL method designed specifically for mul-
tivariate time series data [Box et al., 2015], which advocates
a curriculum learning strategy to find a better local optimum
of the GNN and splits multivariate time series into subgroups
during training. Specifically, since directly optimizing the tra-
ditional objective enforces the model to focus too much on
improving the accuracy of long-term predictions while ignor-
ing short-term ones, this method proposes a curriculum learn-
ing strategy for the multi-step forecasting task. The training
is scheduled by starting with solving the easiest problem, i.e.,
only predicting the next one-step, which helps the model to
find a good starting point. As the training progresses, the pre-
diction length of the model is gradually increased, so that the
model can learn the hard task step by step. Overall, it is one
effective trial combining GNN and curriculum learning in the
application of multivariate time series forecasting.

4.2 Automatic Node-level Graph CL
We next describe automatic node-level graph CL methods,
which consider the model’s feedback during training to dy-
namically adapt to the optimization status.

MentorGNN [Zhou et al., 2022a] derives a curriculum for
pre-training GNNs to learn informative node representations.
In order to tailor complex graph signals to boost the gen-
eralization performances, it develops a curriculum learning
paradigm that automatically reweights graph signals for good
generalization of the pre-trained GNNs in the target domain.
Specifically, a teacher model that is a graph signal reweight-
ing scheme gradually generates a domain-adaptive curricu-
lum to guide the pre-training process of the student model that
is a GNN architecture, so that the generalization performance
in the node classification tasks can be enhanced. The cur-
riculum is a sequence of graph signals that are extracted from
the given graph. And the learned sample weighting scheme
specifies a curriculum under which the GNNs are pre-trained
gradually from the easy samples to the hard samples. The dif-
ficulty of training samples is measured by the teacher model
and the training process is scheduled by the introduced learn-
ing threshold controlling the sample selection, so it belongs
to automatic graph CL. The accuracy of this method on node
classification in the graph transfer setting [Hu et al., 2020b]
is largely enhanced.

RCL (Relational Curriculum Learning) [Zhang et al.,
2023] claims that existing GNNs learn suboptimal node rep-
resentations since they usually consider every edge of the
input graph equally. Also, most graph CL methods simply
consider nodes as independent samples for training, and in-
troduce curriculum learning for these independent samples,
which largely ignore the fundamental and unique dependency
information behind the graph topology structure, and thus can
not well deal with the correlation between nodes. To tackle
this problem, it proposes a graph CL method, which lever-
ages the various underlying difficulties of data dependencies,
to train better GNNs that can improve the quality of learned
node representations. Specifically, it considers the relation
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between nodes gradually into training based on the relation’s
difficulty from easy to hard, where the degree of difficulty is
measured by a self-supervised learning paradigm instead of
a predefined heuristic-based metric. Then it develops an op-
timization model to iteratively increment the training struc-
ture according to the model training status and a theoretical
guarantee of the convergence on the optimization algorithm
is provided. Finally, it presents an edge reweighting strategy
to smooth the transition of the training structure between iter-
ations, and reduce the influence of edges that connect nodes
with relatively low confidence embeddings.

DRL (Learn curricula with Deep Reinforcement Learn-
ing) [Qu et al., 2018] studies learning curriculum for node
representations in heterogeneous star network [Sun et al.,
2009] that has a center node type linked with multiple at-
tribute node types through different types of edges, namely
learning a sequence of edges of different types for node rep-
resentation learning. A curriculum is defined as a sequence of
edge types used for training, so the problem is formulated as a
Markov decision process [Puterman, 1990]. It learns the opti-
mal curriculum by estimating the Q value of each state-action
pair, namely the expected cumulative reward after taking the
action from the state, by a planning module and a learning
module. Finally, the meaningful curriculum can be learned
with high accuracy and low time costs for enhancing the per-
formance of node classification.

GAUSS (Graph ArchitectUre Search at Scale) [Guan et al.,
2022] is one large-scale node-level representation learning
method by searching the GNN’s architecture with curricu-
lum learning. Since this method focuses on the large-scale
graph whose efficiency issue becomes the main obstacle, it
proposes a graph sampling-based single-path one-shot super-
net [Pham et al., 2018] to reduce the computation burden. To
address the consistency collapse issues, it explicitly considers
the joint architecture-graph sampling via a GNN architecture
curriculum learning mechanism on the sampled sub-graphs
and an architecture importance sampling algorithm [Tokdar
and Kass, 2010]. Specifically, it first forms a curriculum
learning group for the GNN’s architecture, and then makes
the best learner as the teacher to decide a smoother learning
objective for the group. The importance sampling is also uti-
lized to reduce the variance during architecture sampling to
form better learning group. Experiments of node classifica-
tion on the large-scale graph show the effectiveness of this
graph CL method.

CGCT (Curriculum Graph Co-Teaching) [Roy et al.,
2021] presents a graph CL method for the multi-target do-
main adaptation based on feature aggregation and curriculum
learning. The authors claim that learning robust and gener-
alized representations in a unified space is just one prereq-
uisite for tackling minimum risk across multiple target do-
mains, where GNNs can play an important role in aggregat-
ing semantic information from neighbors across different do-
mains on graphs represented as the source and target nodes.
Then, the curriculum learning strategy is advocated in the
proposed co-teaching framework to obtain pseudo-labels in
an episodic fashion for mitigating information absence for the
target nodes. Furthermore, an easy-to-hard curriculum learn-
ing strategy for domain selection is also proposed, where the

feature alignment starts with the target domain that is clos-
est to the source (easy one) and then gradually progresses
towards the hard one, making the feature alignment process
smoother. The experiments show that the performance on
multi-target domain adaptation settings is improved by this
curriculum graph co-teaching scheme.

5 Link-level Graph CL
Links explicitly interconnect nodes in a graph, representing
the relations and dependencies between nodes. Compared
with node-level graph CL, link-level graph CL measures the
difficulty and schedules the training on links.

5.1 Predefined Link-level Graph CL
GCN-WSRS (GCN for Web-Scale Recommender Sys-
tems) [Ying et al., 2018] presents a curriculum learning for
negative sampling in link prediction tasks, whose effective-
ness is validated in recommendation datasets. Specifically,
the GNN model for learning link representations is fed easy-
to-hard samples during the training process, resulting in per-
formance gains. At the first training epoch, there are no
hard negative links used for training, so the GNN model can
quickly converge to find an area in the parameter space where
the loss is small. Note that the hard samples are those related
to the query samples, but not as related as the positive sam-
ples in link predictions. The training scheduler outputs the
rank of items in a graph according to the Personalized PageR-
ank scores [Gasteiger et al., 2018] with respect to the query
sample. As training proceeds, the harder negative links are
added to the training set in subsequent epochs, which encour-
ages the GNN model turns to learn how to distinguish highly
related samples from only slightly related ones. In particular,
e − 1 hard negative samples are added to the training set at
the epoch e.

TUNEUP [Hu et al., 2022] is a two-stage curriculum
learning strategy for better training GNNs, showing competi-
tive performance gains against traditional GNNs in predicting
new links in a graph given existing links on citation networks,
protein-protein networks, and recommendation benchmarks.
The link scores are produced by the inner product of the two
connected nodes. Therefore, TUNEUP first trains a GNN
to perform well on relatively easy head nodes (nodes with
large degrees) and then proceeds to finetune the GNN to
also perform well on hard tail nodes (nodes with small de-
grees). The node degrees are used to measure the difficulty
of training samples. Specifically, in the first stage, TUNEUP
randomly presents training samples to train the GNN model
for obtaining a strong base GNN model. This base GNN
model is encouraged to learn better representations for the
head nodes, but performs poorly on the tail nodes. Thus, to
handle this problem, in the second training stage, it further
finetunes the base GNN model with increased supervisions
on tail nodes, which follow the two steps: synthesizing more
tail node inputs and adding target supervisions on the syn-
thetic tail nodes. In addition to improving the performance of
link predictions, it also performs well in learning node repre-
sentations.

CHEST (Curriculum pre-training based HEterogeneous
Subgraph Transformer) [Wang et al., 2023] designs a curricu-
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lum graph pre-training strategy to gradually learn from both
local and global contexts in the subgraph, which helps the
GNN model to more effectively capture useful information
for link prediction in recommendation. Compared with the
supervised methods above, this method focuses on curricu-
lum graph pre-training tailored to the link prediction. Specif-
ically, the difficulty measurer is predefined on several pre-
training tasks. Three easy pre-training curricula are related to
node, edge and meta-path [Sun et al., 2011], focusing on lo-
cal context information within the subgraph. And a hard pre-
training curriculum is a subgraph contrastive learning task,
focusing on global context information at subgraph level for
user-item interaction. The training scheduler is hand-crafted
that schedules the pre-training tasks from the curricula in
an “easy-to-hard” order, which is necessary to model com-
plex data relations. The learned GNN model after curriculum
learning can produce representations that are aggregated into
obvious clusters, by gradually extracting useful information
for user-item interaction, to improve the link prediction tasks.

5.2 Automatic Link-level Graph CL
GTNN (Graph Text Neural Network) [Vakil and Amiri,
2022] is one representative automatic link-level graph CL
method. It trains GNN with trend-aware curriculum learn-
ing, which improves the performance on relation extraction
that is one type of link-level task. Inspired by the Super-
Loss (SL) [Castells et al., 2020] which is a generic curricu-
lum learning approach that dynamically learns a curriculum
from model status, this method further designs Trend-SL cur-
riculum learning approach, which belongs to self-paced cur-
riculum learning [Wang et al., 2021a]. Specifically, Super-
Loss ignores the trend of instantaneous losses at sample-level
that can not only improve the difficulty estimations of the
model by making them local, sample dependent and poten-
tially more precise, but also enable the model to distinguish
samples with similar losses based on their known loss tra-
jectories. In contrast, Trend-SL takes into account the loss
information from the local time window before each iteration
for capturing a form of momentum of loss on rising or falling
trends and producing individual sample weights. Trend-SL
adopts trend dynamics to shift the difficulty boundaries and
adjust global difficulty using local sample-level loss trends.
With the help of the Trend-SL, the performance of relation
extraction can be improved on several benchmarks.

6 Graph-level Graph CL
Compared with node-level and link-level graph CL, graph-
level graph CL focuses more on the global high-level proper-
ties of the whole graph to design the difficulty measurer and
training scheduler for curriculum learning.

6.1 Predefined Graph-level Graph CL
CurGraph [Wang et al., 2021b] proposes a curriculum learn-
ing method for graph classification tasks via easy-to-hard cur-
riculum. It first obtains graph-level embeddings via unsuper-
vised GNN scheme InfoGraph [Sun et al., 2019] and further
derives a neural density estimator to model embedding distri-
butions. Then, to tackle the challenges of evaluating the diffi-
culty of graphs induced by high irregular nature of graph data,

it analyzes the graph difficulty in the high-level semantic fea-
ture space. The difficulty scores of graphs are calculated by
a predefined difficulty measurer based on the intra-class and
inter-class distributions of their embeddings. For the training
scheduler, a smooth-step method is proposed to provide a soft
transition from easy to hard graphs for GNNs. At each train-
ing step, the trained GNNs focus on the samples that are near
the border of capability and neither too easy nor too hard,
to expand the border gradually. Finally, the performances of
graph classification are enhanced without extra inference cost
by feeding the graphs in an easy-to-hard order for training.

CuCo [Chu et al., 2021] incorporates curriculum learn-
ing into self-supervised graph-level representation learn-
ing. Compared with the supervised graph CL methods, this
method focuses more on designing curriculum for selecting
and training negative samples effectively, which are impor-
tant steps in learning self-supervised graph representations.
Similarly, it follows the learning process of humans by start-
ing with easy negative samples when learning a new model
and then learning difficult negative samples gradually. The
difficulty measurer evaluates the difficulty of negative sam-
ples in the training dataset, which is calculated based on
the embedding’s similarity between the negative and positive
samples. In addition, the training scheduler is proposed to
decide how the negative samples are introduced to the train-
ing procedure by utilizing common function families: log-
arithmic, linear, quadratic, and root [Wang et al., 2021a;
Soviany et al., 2022]. This method is the first to study the
impact of negative samples in graph-level contrastive repre-
sentation learning by introducing curriculum learning.

HACL (Hyper-graph based Attention Curriculum Learn-
ing) [Ahmed et al., 2022] is a graph attention curriculum
learning approach to learn hypergraph representations. Note
that the hypergraphs are converted from the text written by
the patients, which can be used to identify depressive symp-
toms of the patients. Based on the semantic vectors from
an emotion-driven context extraction technique and the struc-
tural hypergraph, this method separates the important bound-
ary elements from the unlabeled sample and then incorporates
them into the curriculum learning mechanism for the train-
ing process. Finally, the performances of classifying the nine
particular symptoms are highly boosted due to the tailored
designs on graph CL.

Dual-GCN [Dong et al., 2021] is one GNN model encod-
ing structure information from both local and global levels
with curriculum learning as the training strategy, whose ca-
pability is improved on the image captioning task. Specifi-
cally, the local object-level GCN first converts one image into
one graph, where the region to region relation in the image
is modeled by the graph topology. Besides, it also introduces
auxiliary information to take into account the image’s similar-
ity relation by the global image-level GCN. To train this Dual-
GCN, curriculum learning is adopted as the training strategy,
where a cross-review scheme is introduced to distinguish the
difficulty of the training samples. The difficulty is measured
by a predefined metric, which is used to sort the training sam-
ples and divide them into several subsets. After that, all the
training samples are scheduled in the order from easy subsets
to difficult subsets.
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6.2 Automatic Graph-level Graph CL
CurrMG [Gu et al., 2022] designs a curriculum learning
strategy to learn representations for molecular graphs. It
arranges the easy-to-hard training curriculum in predefined,
(automatic) transfer teacher, and hybrid types [Hacohen and
Weinshall, 2019]. To design molecular graph CL with high
robustness and applicability, six optional difficulty measurers,
inspired by chemical domain knowledge and prior task infor-
mation, are proposed, which can be divided into structure-
specific, task-specific and hybrid types. For the training
scheduler, it is infeasible to split the training data based on
molecular difficulties explicitly, as the difference of difficulty
distributions is calculated by different difficulty measurers.
Therefore, a monotonically increasing smooth curve called
competence function is introduced to control the data sam-
pling space. The competence value is treated as a threshold
for decreasing the data sampling space continuously, which
is used for sampling current batch data during the training
process. Finally, the training scheduler encourages the GNN
model to pay attention to the easy graphs in the early training
stage, and gradually broaden the learning scope by contacting
those difficult graphs.

HAC-TSP [Zhang et al., 2022b] proposes to design
hardness-adaptive curriculum for solving travelling salesman
problem (TSP) [Applegate et al., 2011] from the perspective
of graphs. Compared with classical graph prediction tasks,
defining a quantitative hardness measurement is challenging
since obtaining the ground-truth solution of a TSP instance
is NP-hard [Hochba, 1997]. Therefore, the difficulty mea-
surer calculates the hardness as greedy self-improving poten-
tials by comparing the current cost with a surrogate model,
avoiding the unbearable computational costs of calculating
the ground-truth optimal solution for TSP. Then, a hardness-
adaptive generator is designed to efficiently and continuously
generate instances with different levels of hardness tailored
for model training. Finally, it proposes a curriculum learner
to fully utilize the hardness-adaptive TSP instances. By learn-
ing instance weights, this method can train the TSP solvers
more efficiently through curriculum learning. This method
moves an important step towards graph CL for solving NP-
hard problems.

7 Future Directions
Curriculum graph machine learning (Graph CL) is an emerg-
ing research topic. Although significant progresses have been
made for Graph CL, there still remain plenty of research di-
rections worthy of future explorations.

• Theoretical guarantees: Although various graph CL
methods have been proposed and demonstrated effective-
ness empirically, it remains to be further explored to de-
rive more fundamental theoretical analysis on graph CL.
A promising direction is to develop such theoretical anal-
ysis inspired by general curriculum learning from the per-
spective of optimization problem [Weinshall et al., 2018]
or data distribution [Gong et al., 2016] for better under-
standing the mechanism and effectiveness of the graph CL
methods.

• More principled Graph CL methods: Although the ex-
isting works studied how curriculum learning methods are
extended to graphs, it is still worth investigating to develop
more principled models for graph curriculum learning by
considering more detailed graph assumptions (e.g., ho-
mophily, heterophily), more complex graph types (e.g., at-
tributed graphs, heterogeneous graphs, signed graphs, mul-
tiplex graphs), or more specific graph properties (e.g., data
dependencies), into the model design. These methods are
expected to further boost the model capacity.

• Generalization and transferability: Currently, most ex-
isting graph CL methods are overly dependent on the graph
labels, so that learned graph models tend to inherit a strong
inductive bias for new testing tasks. However, for real-
world graphs, there will inevitably be scenarios with dis-
tribution shifts between testing and training graph data [Li
et al., 2022b; Li et al., 2022a], which can induce significant
performance drop for most existing approaches lacking the
ability of generalization and transferability. One interest-
ing direction is to learn label-irrelevant, generalizable and
transferable representations via self-supervised learning via
unsupervised pretext tasks, alleviating excessively relying
on labeled data [Chu et al., 2021]. The other feasible direc-
tion is to explicitly consider distribution shifts in the design
of graph CL methods for learning better graph representa-
tions [Zhu et al., 2021].

• Comprehensive evaluation protocols: While the graph
CL methods have made great progress in performance
boost, few works have made efforts on evaluating them
with general graph benchmarks. The adopted datasets and
evaluation metrics of existing works mainly follow clas-
sical settings. It is essential to develop a unified bench-
mark with unified metrics to evaluate and compare different
methods, which should carefully incorporate datasets with
different hardness (e.g., different levels of sparsity, hetero-
geneity, noises), and different evaluation metrics (e.g., rel-
ative performance boost, convergence speedup, additional
computational costs). Besides, publicly available graph
CL libraries are also important to facilitate and advance
the research, which can be developed upon the existing li-
brary [Zhou et al., 2022b].

• Broader applications: Although graph CL methods have
been applied on several tasks as discussed in this work, it
is worth further exploring the potential capacity in more
diverse real-world applications, including recommenda-
tion [Ying et al., 2018], healthcare [Ahmed et al., 2022],
biochemistry [Gu et al., 2022], etc., for more effective and
satisfying predictions. One of the major challenges is how
to incorporate proper domain knowledge as additional pri-
ors to guide the model design.
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